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Dollar-Cost Averaging (DCA) is a widely used technique to mitigate volatility
in long-term investments of appreciating assets. However, the inefficiency of
DCA arises from fixing the investment amount regardless of market conditions.
In this paper, we present a more efficient approach that we name SmartDCA,
which consists in adjusting asset purchases based on price levels. The simplicity
of SmartDCA allows for rigorous mathematical analysis, enabling us to establish
its superiority through the application of Cauchy-Schwartz inequality and Lehmer
means. We further extend our analysis to what we refer to as ρ-SmartDCA, where
the invested amount is raised to the power of ρ. We demonstrate that higher val-
ues of ρ lead to enhanced performance. However, this approach may result in
unbounded investments. To address this concern, we introduce a bounded ver-
sion of SmartDCA, taking advantage of two novel mean definitions that we name
quasi-Lehmer means. The bounded SmartDCA is specifically designed to retain
its superiority to DCA. To support our claims, we provide rigorous mathematical
proofs and conduct numerical analyses across various scenarios. The performance
gain of different SmartDCA alternatives is compared against DCA using data from
S&P500 and Bitcoin. The results consistently demonstrate that all SmartDCA
variations yield higher long-term investment returns compared to DCA.

I. Introduction

Dollar Cost Averaging (DCA) is a com-
mon investment strategy, where an investor
puts regularly a constant fraction of her
wealth into the same asset to outperform
the return that she would get by putting all
her capital in an asset at once [1, 2]. Other
more sophisticated investment strategies
have been shown experimentally to outper-
form the DCA [3, 4, 5]. However, it is often
hard to prove that these strategies can sys-
tematically outperform the DCA.

In this work, we provide mathematical
proof for a simple investing strategy that
can outperform the DCA in any market
condition, which we call the SmartDCA.
Essentially it consists in regularly investing
an amount of money that is inversely pro-
portional to the current price of the asset.
Similar approaches have been used before,
without a rigorous mathematical justifica-
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tion [3, 4, 5], and thus only claiming em-
pirically their superiority, in simulation or
on historical data. Instead, we show that
it is possible to have investment strategies
that are provably better than DCA, with-
out any assumption on the market. For
that, we had to introduce new definitions
of means that are generalizations of the
Lehmer mean, and for that reason, we call
quasi-Lehmer means, in analogy with quasi-
arithmetic means [6, 7, 8]. We show on
historical S&P500 and Bitcoin data, that
investing through the SmartDCA system-
atically improves the return on investment
with respect to DCA.

II. SmartDCA: using the price ratio

We start by proving mathematically how
regularly investing in an asset a quantity of
money that is inversely proportional to the
current price, results in a better cost per
unit of the asset. For the sake of clarity, we
first show how it is the case when only two
trades are considered in Sec. II.A, and then
we prove it for any number of investment
events in Sec. II.C.
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A. Mean cost of 2-buying times

We study three scenarios of investment
and compare them mathematically in order
to prove what is the best strategy for in-
vesting in an arbitrary asset. Consider buy-
ing a good, for example gas, every month,
anything that one would recurrently buy.
The question we ask is whether it is more
advantageous to buy a fixed quantity of
gas (Regular Investing), than buying vary-
ing amounts of gas at a fixed cost (DCA).
Next, we explore the intuition that when
the price of gas is low, it is in our interest
to buy more, and less when the price is high
(SmartDCA).

First scenario: Regular Investing (RI)

This scenario consists in buying at two
times, t1 and t2, a quantity q of an asset.
At t1 the price is p1, and p2 is the price at
t2. The total cost ctot that is spent is:

(1) ctot = p1q + p2q

For example, let’s say one bought half a
litre of gas q = 0.5L at each time step, p1 =
0.5$, p2 = 1.5$ the total quantity is qtot =
2q = 1L, for a total cost of ctot = 2$. For
the first scenario, the average cost per litre
of gas µRI = ctot/qtot is:

µRI =
p1q + p2q

2q
(2)

=
p1 + p2

2
(3)

In that case, the regular investing strat-
egy turns out to give an average cost Eq. (3)
equal to the arithmetic mean of the prices.
With the gas example, the average price
would be µRI = 1$/L.

Second scenario: Dollar Cost Average
(DCA)

Now let’s say that instead of buying a
fixed amount of gas, one decided to al-
ways spend the same amount of money, at
a fixed cost c: this is the Dollar Cost Aver-
age (DCA). At each time step, the quantity

q that is bought, is different. This quantity
depends on the price p of one unit of asset:

(4) q = c/p

In the gas example, if the price of one litre
is 2$/L, and one decides to buy for a cost
c = 1$, then trivially, he bought a quantity
q = 0.5L. This time the total cost is:

(5) ctot = c + c = 2c

The total quanity qtot of the asset is:

(6) qtot = c/p1 + c/p2

So, in the end, for the second scenario,
the price per unit of asset is simply:

µDCA =
2c

c/p1 + c/p2
=

2p1p2
p1 + p2

(7)

The average price in the case of the DCA
is well known in statistics, as it is the har-
monic mean. This is interesting because
Eq. (3) and Eq. (7) are related in a well-
known inequality, explaining why DCA is
superior to RI:

p1 + p2
2

≥ 2p1p2
p1 + p2

(8)

which means that we pay less for the same
amount of asset.

Following our example with gas, the aver-
age price for the DCA is µDCA = 0.75$/L,
which is indeed inferior to µRI = 1$/L.

Note that when p1 = p2 the two scenarios
give the same price per unit, by replacing
in Eq. (3) and Eq. (7):

µRI =
2p1
2

= p1(9)

µDCA =
2p1

2

2p1
= p1(10)
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Third scenario: SmartDCA

Now we are going to explore a last sce-
nario, where instead of buying at a fixed
cost, irrespective of market conditions, we
are going to optimize things by applying the
following logic: if the price is higher, then
we want to buy less, and vice-versa. We
call this method the SmartDCA. First, at
t1, we buy for a base cost c1 = cb. Next, at
t2 we buy for a cost that will depend on the
price movement and the base price:

(11) c2 = cb
p1
p2

Now the total quantity qtot of the asset to
buy is:

(12) qtot =
cb
p1

+
cb
p2

p1
p2

Which, with some arithmetic, gives:

(13) qtot = cb

(
p1

2 + p2
2

p1p22

)
The total cost of these transactions is:

ctot = cb + cb
p1
p2

(14)

that results in the price per unit
µSmartDCA = ctot/qtot:

(15) µSmartDCA =
cb + cb

p1

p2

cb
(

p1
2+p2

2

p1p2
2

)
We rewrite to obtain the final form:

(16) µSmartDCA = p1p2
p1 + p2
p12 + p22

This mean is inversely proportional to
the contraharmonic mean. With our pre-
vious gas prices, we have a price per unit
of µSmartDCA = 0.6$/L, which is inferior to
µDCA. Note that when p1 = p2 all three
scenarios still give the same price per unit,

using Eq. (16):

µSmartDCA =
p1

3 + p2
3

p12 + p12
(17)

=
2p1

3

2p12
= p1(18)

µSmartDCA = µDCA = µRI = p1(19)

B. Suppremacy of SmartDCA for 2-buys

To actually provide a real proof, we need
to show that the inverse of the contrahar-
monic mean (SmartDCA), is inferior or
equal to the harmonic mean (DCA). For
ease of notation, we will consider x = p1
and y = p2 in the following proof. So we
need to solve the following inequality:

(20) 2
xy

x + y
≥ x2y + y2x

x2 + y2

and with some arithmetics we obtain:

2

x + y�
�xy ≥ ��xy

x + y

x2 + y2
(21)

2
x2 + y2

(x + y)2
− 1 ≥ 0(22)

2(x2 + y2) − (x + y)2 ≥ 0(23)

Simplifying:

x2 + y2 − 2xy ≥ 0(24)

(x− y)2 ≥ 0(25)

which is a well-known polynomial identity,
and trivially, a square cannot be negative,
so this is true for all x and y. It means
that the difference between the DCA and
the SmartDCA scales as the square of the
difference between p1 and p2, and as seen
previously, when p1 = p2, they are equal.

C. Supremacy for m-buys

In the most general form, we want to
see if after m buys performed by the in-
vestor using the SmartDCA, the cost per
unit of asset is better than using DCA.
Essentially the quantity to invest accord-
ing to the SmartDCA has to be inversely
proportional to the price, but to make it
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unitless we will multiply it by a reference
price of our choice pr, and therefore the
vanilla SmartDCA suggests investing pr/pi
at time i. We prove in App. A that:

Theorem 1 (SmartDCA superiority over
DCA). Over m-buying events, investing
through the SmartDCA results in better
price per unit than investing through DCA.

D. Generalization to ρ-SmartDCA

If we want to be even more general, let’s
consider investing (pr/pi)

ρ regularly at the
i-th buying event, and let’s call the result-
ing strategy the ρ-SmartDCA, which gives
an average price per unit of the asset µρ.
Again, pr is the price of reference and will
be kept constant. The interest in using such
exponent is that when the price is above the
price of reference, it will result in even less
investing, and when the price is inferior, it
will exponentially increase. In the follow-
ing, we will demonstrate that this strategy
gives superior results. After the Theorem
statement, we show the proof of superior-
ity. We use it to introduce the concept
of Lehmer mean [6], necessary for the even
more general Thm. 4 that will follow.

Theorem 2 (ρ-SmartDCA improves
with higher ρ). Investing through the
ρ-SmartDCA, higher ρ results in better
price per unit, over m buying events.

PROOF:
We proceed as before, at each time step,

we invest an amount proportional to a base
cost cb, take the ratio of the reference price
pr and the current price, and then raise it
to the power of ρ. We therefore buy a total
quantity q for a total price c:

c = cb

(
pr
p1

)ρ

+ cb

(
pr
p2

)ρ

+ · · ·

· · · + cb

(
pr
pm

)ρ

(26)

q =
cb
p1

(
pr
p1

)ρ

+
cb
p2

(
pr
p2

)ρ

+ · · ·

· · · +
cb
pm

(
pr
pm

)ρ

(27)

Since pr is constant, we will use the ratio
ri = pr/pi as our base of reference for the
calculus:

q =
cb
pr

( m∑
i=1

rρ+1
i

)
(28)

c = cb
( m∑

i=1

rρi

)
(29)

and we are interested in the mean price per
unit of asset:

µρ =
c

q
= pr

∑m
i=1 r

ρ
i∑m

i=1 r
ρ+1
i

(30)

Now, notice the similarity with the
Lehmer mean [6]:

Lρ(x) =

∑m
i=1 x

ρ
i∑m

i=1 x
ρ−1
i

(31)

We will make use of the fact that
ρ ≤ ρ′ =⇒ Lρ(x) ≤ Lρ′(x) [9].
Using the notation r = pr(1/p) =
pr(1/p1, 1/p2, · · · , 1/pm), If ρ ≤ ρ′ we can
write the mean cost of a unit of the asset
as:

µρ = pr

∑m
i=1 r

ρ
i∑m

i=1 r
ρ+1
i

(32)

=
pr

Lρ+1(r)
(33)

≥ pr
Lρ′+1(r)

= µρ′(34)

and therefore, the higher the ρ, the better
the average price per unit. QED.

Notice that ρ = −1 corresponds to the
Regular Investing strategy and ρ = 0 to
the DCA. Therefore, both can be consid-
ered to belong to a more general family of
investing strategies, the ρ-SmartDCA. As
a consequence of Theorem 2, any ρ > 1
will outperform the SmartDCA, any ρ > 0
will outperform the DCA and any ρ > −1
will outperform Regular Investing. More-
over, if ρ → ∞, L∞(r) = max{r} [10], thus
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µ∞ = pr/max{r} = min{p}, and we have
a lower bound for the best strategy price
per unit. Therefore, all these strategies are
connected by their price per unit µρ, in the
following inequality:

µ−1 ≥ µ0 ≥ µρ≥0 ≥ min{p}

E. Generalization to (f)ρ-SmartDCA

Now, the drawback of using the
ρ-SmartDCA as above is that it will
potentially ask you to invest more money
than you have if the price is sufficiently
low. Indeed, we have (pr/pi)

ρ → ∞ as
pi → 0, which happens exponentially faster
with ρ > 1. For that reason, we propose
two modifications that can be defined to
have a maximal investment amount. In
the in version, for every buying event, we
invest cbf((pr/pi)

ρ), and in the second out
version we invest cbf(pr/pi)

ρ, where in, out
are just a reminder of the positioning of
the power with respect to f . Notice that
the results in this section hold for any
f positive monotonic increasing, and for
example, if f is the identity, we recover the
unbounded ρ-SmartDCA as a special case.
However, we are interested in f bounded,
such as the function tanh, since in that case
the strategy could only ask the investor for
a maximal investment of cb. To be able to
tackle this more general case, we introduce
two new means that we call quasi-Lehmer
means, taking the form:

L
(in)
ρ+1(x) =

∑m
i=1 xif(xρ

i )∑m
i=1 f(xρ

i )
(35)

L
(out)
ρ+1 (x) =

∑m
i=1 xif(xi)

ρ∑m
i=1 f(xi)ρ

(36)

where the naming choice is to draw the par-
allel with quasi-arithmetic means. In fact,
we prove in App. B that:

Theorem 3 (quasi-Lehmer means mono-
tonicity). If ρ ≤ ρ′ and f is posi-
tive and monotonic increasing then

L(out)
ρ (x) ≤ L

(out)
ρ′ (x), and therefore

L(out)
ρ (x) is monotonic increasing with

ρ. However, L(in)
ρ (x) is not in general

monotonic increasing with ρ.

We show in App. B that a similar The-
orem holds for what we call the quasi-
Lehmer moments and the quasi-Lehmer ex-
pectations. We use this Theorem to prove
in App. C, that the out version of the
(f)ρ-SmartDCA improves with ρ:

Theorem 4 (The higher the ρ, the
better the (f)ρ-SmartDCA(out)). Investing
through the (f)ρ-SmartDCA(out) results in
better price per unit over m-buying events,
if we increase ρ.

Given that we recover the DCA strategy
as we set ρ = 0, the last Theorem also im-
plies that (f)ρ-SmartDCA(out) outperforms
DCA. If f is chosen to be bounded, it does
so without incurring into the risk of exorbi-
tant investments that could be suggested by
the unbounded ρ-SmartDCA. Given that
we proved above that DCA outperforms
RI, it follows that (f)ρ-SmartDCA(out) also
outperforms RI.

III. Numerical Analysis

A. (f)ρ-SmartDCA outperforms DCA for
any ρ experimentally

We show in Fig. 1 the effect that ρ
has on µ, the price per unit of the asset,
for ρ-SmartDCA, (f)ρ-SmartDCA(in) and
(f)ρ-SmartDCA(out). We can see that all
of them outperform the DCA, in the sense
that all have lower price per unit µ. The
price is simulated as samples from a uni-
form distribution between zero and two.
This stresses that our strategies outper-
form the DCA even in the lack of mar-
ket trends. The unbounded ρ-SmartDCA
achieves the lowest price per unit, but it re-
sults in absurd investments required when
the prices are very low, as can be seen in the
lower panels. (f)ρ-SmartDCA(out) tends to
achieve better µ than (f)ρ-SmartDCA(in),
with the added advantage of being al-
ways provably better than DCA. The three
columns in the plot correspond to three
different f : tanh, sigmoid and what we call
the sin-1, a function that goes from zero to
one as a sin, and then stays at one.



6 PAPERS AND PROCEEDINGS 08 2023

0.0

0.2

P
ri

ce
p

er
u

n
it

tanh sigmoid sin-1

0 20
ρ

200

250

300

350

400

In
ve

st
ed

qu
an

ti
ty

0 20
ρ

0 20
ρ

DCA

(f )ρ-SmartDCA(in)

ρ-SmartDCA

(f )ρ-SmartDCA(out)

Figure 1. SmartDCA outperforms DCA for any

ρ ≥ 0 choice. We simulate the behaviour of an in-

vestor that puts money regularly into an asset.

The prices of the asset at buy time are 100 samples

from a uniform distribution from zero to two. We

plot the price per unit and invested quantity for

three choices of f . All SmartDCA variants man-

age to buy at a lower price than the DCA, for

any choice of ρ. However, unbounded SmartDCA

(orange) can suggest exorbitant amounts to in-

vest if the price is low enough, as seen in the

lower panels. Only (f)ρ-SmartDCA(out) (green) is

provably and unconditionally better than DCA,

without investment amounts that blow up with

low prices, as we prove mathematically and con-

firm through the plots. Even if the invested

quantities appear lower for (f)ρ-SmartDCA(out)

and (f)ρ-SmartDCA(in) than for DCA, they can

be matched with a higher cb, where cb = pr = 1 in

the plot.

2015-10-02 2017-09-27 2019-09-24 2021-09-17
Date

0.00

0.25

0.50

0.75

1.00

R
O

I

A
S&P500

2022-01-02 2022-04-12 2022-07-21 2022-10-29
Date

−0.4

−0.2

0.0

0.2

C
BTC

DCA SmartDCA 2-SmartDCA 3-SmartDCA (tanh) SmartDCA (tanh) 2-SmartDCA

1973-1978

1978-1983

1983-1988

1988-1993

1993-1998

1998-2003

2003-2008

2008-2013

2013-2018

2018-2023

Period (5 years)

0.0

0.5

1.0

R
O

I

B

2018-2019

2019-2020

2020-2021

2021-2022

2022-2023

Period (1 years)

0

1

2

D

Figure 2. ROI on S&P500 and Bitcoin: SmartDCA outperforms DCA. We simulate a buyer using

DCA, ρ-SmartDCA with ρ ∈ {1, 2, 3}, and (f)ρ-SmartDCA(out) with ρ ∈ {1, 2} and f = tanh. All SmartDCA

variants achieve higher Return on Investment (ROI) than the DCA, for any ρ choice, on both the

S&P500 and Bitcoin. Notice that the (f)ρ-SmartDCA(out) variants are not plotted in the upper panels

because they were completely overlapping with their unbounded version. This is the case since the

high prices of both studied assets would activate the linear part of the tanh, resulting in very similar

results as the unbounded ρ-SmartDCA. Lower panels show that the same improvement over DCA can be

seen in every single period of five years for S&P500, and every single period of one year for Bitcoin.
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B. Improvements on S&P500 and Bitcoin
Investments

In this section, we backtest this fam-
ily of strategies using real-life case scenar-
ios. Since investment strategies are of in-
terest on an overall up-trend, we test them
on assets with long-term appreciating val-
ues. We are going to use the stock mar-
ket S&P500, an Exchange Traded Fund
which measures the market capitalization of
the United States 500 largest corporations.
This asset class is particularly attractive for
DCA investors because its estimated annu-
alized total return is around 9% (from Jan-
uary 1996 to June 2022) [11]. The other
asset we use is Bitcoin (BTC) [12], a digital
crypto-currency based on a decentralized
peer-to-peer electronic cash system. Bit-
coin has grown in popularity over the last
few years and has seen its price skyrocket,
with an average annual return of around
80% [13].

For the backtest, we fix the price of ref-
erence to the first price obtained in the
time series pr = p1, and we test ρ =
{1, 2, 3} along with the function tanh(out).
To evaluate the performance of these strate-
gies, we measure the Return on Investment
(ROI), computed as the net gains divided
by the costs. The simulations are per-
formed with kiwano-portfolio [14], using the
setting fast backtesting. kiwano-portfolio is
an open-source trading software created by
the authors. As it can be seen in Fig. 2, all
ρ-SmartDCA and (f)ρ-SmartDCA variants
outperform the DCA ROI, as we expected
given our mathematical proofs. We show
in the upper panels how the distance with
DCA compounds over time. We also show
in the bottom panels that the improvement
over DCA can be seen in all five-year pe-
riods considered for the S&P500 and all
one-year periods for Bitcoin. One can note
that even for periods of loss, the SmartDCA
strategies still manage to lose less than the
DCA.

C. Adapting f on past data

Note that if the shape of f and the refer-
ence price pr are not chosen carefully, the fi-
nal quantity bought can be very low, even if

it was bought at an excellent price per unit.
To address this issue, we propose adapting
the sensitive part of a sigmoid curve to the
maximal and minimal prices of the previous
year:

(37) f(x) = sigmoid((x− x0)/λ)

with x0 = (ymax + ymin)/2 and λ = (ymax−
ymin)/8. We define ymax = maxi 1/pi
and ymin = mini 1/pi over the prices of
the previous year. We refer to the re-
sulting strategy as the (sig+) SmartDCA.
As you can see in Table 1, assuming a
base cost investment of cb = 1$ in Bit-
coin each day, 3-SmartDCA achieves the
best ROI and µ (price per unit), but it
comes with an investment over twice our
base cost. On the other hand, the bounded
(tanh) SmartDCA achieves the second best
ROI and µ, but buys a negligible quan-
tity of Bitcoin. By adapting the shape
of the sigmoid, we manage to maintain
a better ROI and µ than DCA, and pur-
chase an amount significantly closer to our
desired base cost. Finally, one can ob-
serve that multiplying by three the base
amount of dollars invested per day with
(sig+) SmartDCA, would roughly result in
the same final quantity of asset obtained
with DCA, while keeping a lower µ and
higher ROI.

IV. Discussion and Conclusion

We showed that the DCA, and Regu-
lar Investing, are elements of a broader
category of strategies that we called
(f)ρ-SmartDCA, with f a positive mono-
tone increasing function, and ρ the expo-
nent applied to a modulator for a refer-
ence price pr, and a base cost cb, such
that the suggested investment at time i is
cbf(pr/pi)

ρ. For each of these strategies,
we computed the average price per unit µρ

and were able to demonstrate mathemat-
ically that they follow a decreasing order
with ρ:

µ0 ≥ µ1 ≥ µ2 ≥ ... ≥ µρ(38)

As such, we proved that the DCA corre-
sponds to a 0-SmartDCA, outperformed by
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Strategy µ ($/BTC) qtot (BTC) ctot ($) ROI

DCA 10942.8 0.166 1827 1.518
(sig+) SmartDCA 8893.6 0.058 516.3 1.868
(tanh) SmartDCA 7134.8 2.340 · 10−5 0.166 2.328
3-SmartDCA 4790.5 0.873 4180.9 3.46

Table 1—Finetuning is required to buy substantial quantities. If unchecked, the SmartDCA variants

can end up buying only small quantities of the asset. Here we show that the DCA buys at worse price

per unit than (tanh) SmartDCA but the latter buys only a very small total amount of Bitcoin (0.166$),

from 2017 to 2023. Instead the 3-SmartDCA, will suggest to invest an amount of capital potentially

much higher than foreseen (4180$), despite an excellent ROI. Adjusting the slope and the center of

a sigmoid yearly with data of the maximal and minimal price of the previous year, allows to keep a

better price per unit and ROI than DCA, while maintaining the total quantity bought to 516.3$, below

our chosen maximum of 1827$, that corresponds to one dollar per day.

all (f)ρ-SmartDCA for ρ > 0. Notice that
the buying events could be placed randomly
in time and ρ-SmartDCA would still out-
perform the DCA, since a regular time as-
sumption was never used in the Theorems.
The regularity in the investments is to over-
take human psychology and the tendency to
go into investments when they are popular
and therefore, likely to tip.

Moreover, we introduced the quasi-
Lehmer means and its generalizations to
be able to prove that a wide family
of (f)ρ-SmartDCA mathematically outper-
forms the DCA. Finally, we empirically con-
firmed our theoretical findings on random
data and on the S&P500 and Bitcoin his-
torical data: (f)ρ-SmartDCA is superior to
DCA.

To finish, in Appendix B, we were able to
further generalize our proof by the use of
quasi-Gini means for Thm. 5 and Thm. 6,
and in future work one could potentially de-
sign even more universal investment strate-
gies based on these new theorems.
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Appendix

A. SmartDCA superiority over DCA over m-buying events

Notice that Theorems 1 and 2 are essentially special cases of Theorem 4 for f the identity
function, and only the proof of Theorem 4 would therefore be necessary. However, we show
here a simpler proof for Theorem 1.

Theorem 1 (SmartDCA superiority over DCA). Over m-buying events, investing through
the SmartDCA results in better price per unit than investing through DCA.

PROOF:

Using the SmartDCA, the quantity q of asset we are going to buy is:

q =
cb
p1

pr
p1

+
cb
p2

pr
p2

+ · · · +
cb
pm

pr
pm

(39)

= cbpr
( m∑

i=1

1

p2i

)
(40)

On the other hand, the cost of these transactions is:

c = cb
(pr
p1

+
pr
p2

+ · · · +
pr
pm

)
(41)

= cbpr
( m∑

i=1

1

pi

)
(42)

This results in the following average price:

c

q
=

cbpr
∑m

i=1
1
pi

cbpr
∑m

i=1
1
p2
i

(43)

=

∑m
i=1

1
pi∑m

i=1
1
p2
i

(44)

Now we need the equivalent quantity in the case where the investor used the standard
DCA strategy. In the DCA case, we have the following:

c = mcb(45)

q = cb

m∑
i=1

1

pi
(46)

c

q
=

m∑m
i=1

1
pi

(47)

To establish the superiority of the SmartDCA over the DCA we have to prove the fol-
lowing inequality:
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m∑m
i=1

1
pi

≥
∑m

i=1
1
pi∑m

i=1
1
p2
i

(48)

m
m∑
i=1

1

p2i
≥

m∑
o=1

1

po

m∑
i=1

1

pi
(49)

=
( m∑

i=1

1

pi

)2

(50)

where in the second line we rearranged the factors to make the proof easier. Now we start
from the left-hand side of the inequality, and we use the Cauchy-Schwarz (CS) inequality
to prove that the inequality is actually true:

m
m∑
i=1

1

p2i
=

( m∑
i=1

12
) m∑

i=1

1

p2i
(51)

≥
( m∑

i=1

1 · 1

pi

)2

CS(52)

=
( m∑

i=1

1

pi

)2

(53)

which is exactly what we wanted to prove. QED
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B. Quasi-Lehmer means

Let’s define two quasi-Lehmer means:

L
(out)
ρ+1 (x) =

∑m
i=1 xif(xi)

ρ∑m
i=1 f(xi)ρ

, L
(in)
ρ+1(x) =

∑m
i=1 xif(xρ

i )∑m
i=1 f(xρ

i )
(54)

as two generalizations of the Lehmer mean [6, 7]:

Lρ(x) =

∑m
i=1 x

ρ
i∑m

i=1 x
ρ−1
i

(55)

that was used to prove Theorem 2. Now we want to understand if they are monotonic
increasing with ρ.

Theorem 3 (quasi-Lehmer means monotonicity). If ρ ≤ ρ′ and f is positive and monotonic

increasing then L(out)
ρ (x) ≤ L

(out)
ρ′ (x), and therefore L(out)

ρ (x) is monotonic increasing with

ρ. However, L(in)
ρ (x) is not in general monotonic increasing with ρ.

PROOF:
We proceed by showing that their derivative with respect to ρ is always positive given

the Theorem assumptions, to determine that they are monotonic increasing with ρ. After
taking the derivative and factorizing, in (⋆) we split the summation into terms that are
i > j, i = j, and i < j, notice that they are zero for i = j, and change the notation from
i, j → j, i, when i < j:

L
(out)
ρ+1 (x) =

∑m
i=1 xif(xi)

ρ∑m
i=1 f(xi)ρ

(56)

∂L
(out)
ρ+1 (x)

∂ρ
=

∑m
j=1 f(xj)

ρ ·∑m
i=1 xif(xi)

ρ log f(xi)

−∑m
j=1 f(xj)ρ log f(xj) ·

∑m
i=1 xif(xi)ρ

(
∑m

j=1 f(xj)ρ)2
(57)

=

∑
i,j xif(xi)

ρf(xj)
ρ
(

log f(xi) − log f(xj)
)

(
∑m

j=1 f(xj)ρ)2
(58)

=

∑
i>j xif(xi)

ρf(xj)
ρ
(

log f(xi) − log f(xj)
)

+ xjf(xj)ρf(xi)ρ
(

log f(xj) − log f(xi)
)

(
∑m

j=1 f(xj)ρ)2
⋆(59)

=

∑
i>j f(xi)

ρf(xj)
ρ(xi − xj)

(
log f(xi) − log f(xj)

)
(
∑m

j=1 f(xj)ρ)2
≥ 0(60)

Since f(·) and log(·) are monotonic increasing, then log f(·) is monotonic increas-
ing. This means that if xi > xj then log f(xi) > log f(xi), by definition of mono-
tonic increasing. Therefore if xi − xj > 0 then log f(xi) − log f(xj) > 0 and we have
(xi − xj)(log f(xi) − log f(xj)) > 0. In the opposite case, when xi < xj, by the monotonic
increasing property we have log f(xi) < log f(xj), which we can rewrite as xi − xj < 0
implies log f(xi) − log f(xj) < 0, and therefore the multiplication of two negative numbers
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is positive. This proves that all the summands in Eq. (60) are positive; therefore, the sum
is positive.

As a consequence, L
(out)
ρ+1 (x) will be monotonic increasing as long as f is positive and

monotonic increasing. However, if we follow the same steps for L
(in)
ρ+1(x), we get:

L
(in)
ρ+1(x) =

∑m
i=1 xif(xρ

i )∑m
i=1 f(xρ

i )
(61)

∂L
(in)
ρ+1(x)

∂ρ
=

∑m
j=1 f(xρ

j ) ·
∑m

i=1 xif
′(xρ

i )x
ρ
i log xi

−∑m
j=1 f

′(xρ
j )x

ρ
j log xj

∑m
i=1 xif(xρ

i )

(
∑m

j=1 f(xρ
j ))

2
(62)

=

∑
i,j

[
f(xρ

j )f
′(xρ

i )xix
ρ
i log xi − f(xρ

i )f
′(xρ

j )xix
ρ
j log xj

]
(
∑m

j=1 f(xρ
j ))

2
(63)

=

∑
i>j

[f(xρ
j )f

′(xρ
i )xix

ρ
i log xi − f(xρ

i )f
′(xρ

j )xix
ρ
j log xj

+ f(xρ
i )f

′(xρ
j )xjx

ρ
j log xj − f(xρ

j )f
′(xρ

i )xjx
ρ
i log xi

]
(
∑m

j=1 f(xρ
j ))

2
(64)

=

∑
i>j

[f(xρ
j )f

′(xρ
i )x

ρ
i log xi(xi − xj)

− f(xρ
i )f

′(xρ
j )x

ρ
j log xj(xi − xj)

]
(
∑m

j=1 f(xρ
j ))

2
(65)

=

∑
i>j f(xρ

j )f
′(xρ

i )(x
ρ
i log xi − xρ

j log xj)(xi − xj)

(
∑m

j=1 f(xρ
j ))

2
(66)

=

∑
i>j f(xρ

j )∂f(y)/∂y ρxρ−1
i (xρ

i log xi − xρ
j log xj)(xi − xj)

(
∑m

j=1 f(xρ
j ))

2
(67)

Even when assuming ρ ≥ 0 and f positive and monotonic increasing, it will only be positive
if xρ log x is monotonic increasing with x. However, we show in the following that it is not
generally the case. In fact:

∂

∂x
xρ log x = ρxρ−1 log x + xρ−1(68)

= xρ−1(ρ log x + 1)(69)

which is positive only if ρ log x + 1 ≥ 0 and therefore only for x ≥ e−
1
ρ . In other words,

L
(in)
ρ+1(x) is monotonic increasing with ρ, if ρ ≥ max{−1/ log x, 0} or ρ ≤ min{−1/ log x, 0},

so it’s not in general monotonic increasing with ρ. QED.

For the sake of completeness, we also define the correspondent quasi-Gini means for
ρ + 1 ̸= γ as:

G
(out)
ρ+1,γ(x) =

(∑m
i=1 xif(xi)

ρ∑m
i=1 f(xi)γ

) 1
ρ+1−γ

, G
(in)
ρ+1,γ(x) =

(∑m
i=1 xif(xρ

i )∑m
i=1 f(xγ

i )

) 1
ρ+1−γ

(70)

that become the quasi-Lehmer means for ρ = γ. Note that an analogue to Theorem 3 is
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also valid for higher quasi-Lehmer moments, defined as:

L
(out)
ρ+1,ξ(x) =

∑m
i=1 x

ξ
if(xi)

ρ∑m
i=1 f(xi)ρ

(71)

Theorem 5 (quasi-Lehmer moments monotonicity). If ρ ≤ ρ′, ξ ≥ 1 and f is positive

and monotonic increasing then L
(out)
ρ,ξ (x) ≤ L

(out)
ρ′,ξ (x), and therefore L

(out)
ρ,ξ (x) is monotonic

increasing with ρ.

PROOF:
We proceed similarly as to prove Theorem 3:

L
(out)
ρ+1,ξ(x) = · · ·(72)

=

∑
i>j f(xi)

ρf(xj)
ρ(xξ

i − xξ
j)
(

log f(xi) − log f(xj)
)

(
∑m

j=1 f(xj)ρ)2
≥ 0(73)

which is still monotonic increasing for positive monotonic increasing f because xξ
i is also

monotonic increasing for ξ ≥ 1. QED
As you can see, the same can be proven for the more general case:

L
(out)
ρ+1,g(x) =

∑m
i=1 g(xi)f(xi)

ρ∑m
i=1 f(xi)ρ

(74)

Theorem 6 (quasi-Lehmer expectation monotonicity). If ρ ≤ ρ′, f is positive monotonic

increasing, and g monotonic increasing, then L(out)
ρ,g (x) ≤ L

(out)
ρ′,g (x), and therefore L(out)

ρ,g (x)
is monotonic increasing with ρ.

where the proof follows the exact same steps as the two previous proofs, but e.g. replacing
xξ by g(x).

C. (f)ρ-SmartDCA(out) superiority over DCA

Theorem 4 (The higher the ρ, the better the (f)ρ-SmartDCA(out)). Investing through the
(f)ρ-SmartDCA(out) results in better price per unit over m-buying events, if we increase ρ.

PROOF:
We proceed as before, we start with the ρ-SmartDCA(out), at each time step, we invest

an amount proportional to a base cost cb, and take the ratio of the reference price pr and
current price:

q = cb
( m∑

i=1

1

pi
f
(pr
pi

)ρ)
(75)

c = cb
( m∑

i=1

f
(pr
pi

)ρ)
(76)

Now consider the quasi-Lehmer out mean we defined in the main text:
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L
(out)
ρ+1 =

∑m
i=1 xif(xi)

ρ∑m
i=1 f(xi)ρ

(77)

We will make use of the result of our Threorem 3, the fact that ρ ≤ ρ′ =⇒ L(out)
ρ (x) ≤

L
(out)
ρ′ (x). Using the notation ri = pr/pi, if ρ ≤ ρ′ we can write

µρ =
c

q
(78)

=

∑m
i=1 f(pr

pi
)ρ∑m

i=1
pr

pi
f(pr

pi
)ρ

(79)

=
1

L
(out)
ρ+1 (r)

(80)

≥ 1

L
(out)
ρ′+1 (r)

= µρ′(81)

which ends the proof. QED.


